

Very low-dropout voltage regulator with inhibit function

Datasheet - production data

Features

- Very low-dropout voltage (0.2 V typ.)
- Very low quiescent current (typ. 50 µA in OFF mode, 0.5 mA in ON mode, no load)
- Output current up to 100 mA
- Output voltages: 3 V, 3.3 V, 4.5 V, 5 V, 8 V
- Internal current and thermal limit
- Small 2.2 µF capacitor for stability
- Available in ±1% (A) or ±2% (C) selection at 25 °C
- Supply voltage rejection: 80 dB (typ.)
- Temperature range: -40 to 125 °C

Description

The LEXX is a very low-dropout voltage regulator available in SO-8, TO-92 packages and over a wide range of output voltages.

The very low-dropout voltage (0.2 V) and low quiescent current make it particularly suitable for low-noise, low-power applications and in battery-powered systems.

This device is pin-to-pin compatible with the L78L series. Furthermore, in the 8-pin configuration (SO-8), it uses a shutdown logic control (pin 5, TTL compatible). This means that when the device is used as a local regulator, a part of the board can be put in standby, decreasing the total power consumption. In the three-terminal configuration (TO-92), the device is always in on-state. It requires a 2.2 μ F capacitor for stability, reducing the component size and cost.

	Order code					
SO-8	TO-92 (Ammopack)	TO-92 (tape and reel)	Output voltage (V)			
LE30CD-TR			3			
LE33CD-TR	LE33CZ-AP	LE33CZ-TR	3.3			
LE45CD-TR		ELEOTE	4.5			
LE50ABD-TR	LE33ABZ-AP	ELECIE				
LE50CD-TR			5			
LE80CD-TR			8			

Table 1: Device summary

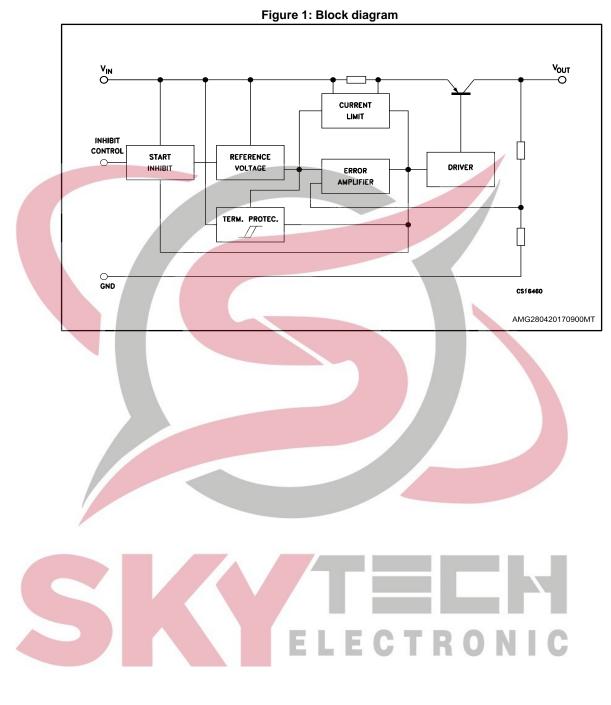
May 2017

DocID2573 Rev 15

1/24 www.st.com

This is information on a product in full production.

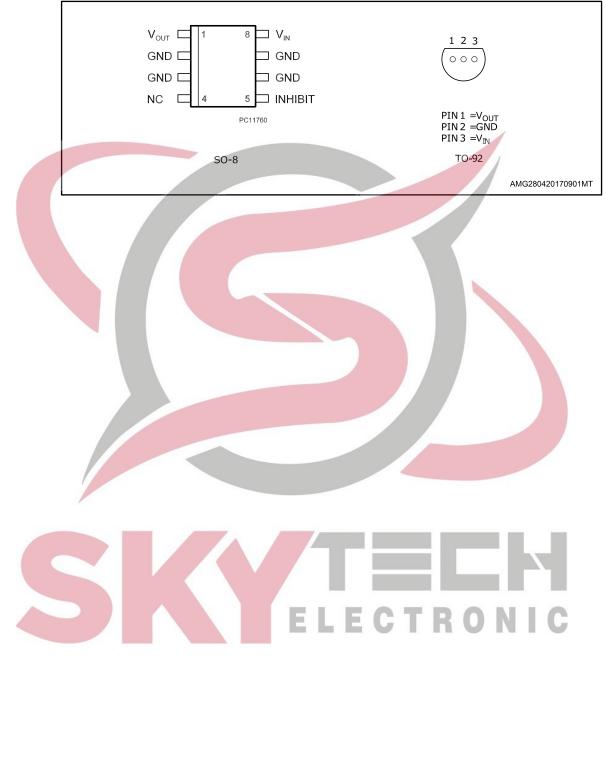
Contents


1	Diagran	n	3
2	Pin con	figuration	4
3	Maximu	ım ratings	5
4	Electric	al characteristics	6
5	Typical	performance characteristics	13
6	Packag	e information	16
	6.1	SO-8 package information	16
	6.2		
	6.3	TO-92 packing information	19
	6.4	TO-92 Ammopak packing information	21
7	Revisio	n history	

DocID2573 Rev 15

57

1 Diagram


DocID2573 Rev 15

3/24

4/24

2 **Pin configuration**

Figure 2: Pin connections (SO-8 top view, TO-92 bottom view)

DocID2573 Rev 15

3 Maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	20	V
lo	Output current	Internally limited (1)	
Ртот	Power dissipation	Internally limited	
Tstg	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Notes:

⁽¹⁾Our SO-8 package, used for voltage regulators, is modified internally to have pins 2, 3, 6 and 7 electrically fused to the die attach pad. This frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heatsinking. The external dimensions are the same as SO-8 standard.

_		Table 3: Thermal data			
	Symbol	Parameter	SO-8	TO-92	Unit
	RthJC	Thermal resistance junction-case	20		°C/W
	R _{thJA}	Thermal resistance junction-ambient	55	200	°C/W

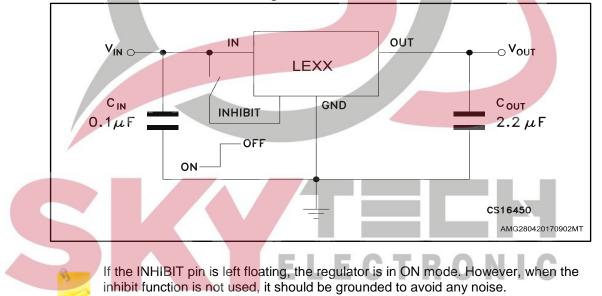


Figure 3: Test circuit

5/24

4 Electrical characteristics

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.

Table 4: LE30AB electrical characteristics

Symbol	Parameter	Test con	dition	Min.	Тур.	Max.	Unit
		lo = 10 mA Vi = 5 V		2.970	3	3.030	
Vo	Output voltage	lo = 10 mA V _I = 5 V T _J = -25 to 85 °C	C	2.940		3.060	V
Vi	Operating input voltage	lo = 100 mA				18	V
lo	Output current limit			150			mA
ΔVo	Line regulation	$V_1 = 3.7$ to 18 V $I_0 = 0.5$ mA			3	15	mV
ΔVo	Load regulation	V ₁ = 4 V lo = 0.5 to 100 r	nA		3	15	mV
		V _I = 4 to 18 V I _O = 0 mA	ON mode		0.5	1	mA
ld	Quiescent current	$V_1 = 4 \text{ to } 18 \text{ V}$ $I_0 = 100 \text{ mA}$			1.5	3	
		Vi = 6 V	OFF mode		50	100	μA
		$I_0 = 5 \text{ mA}$	f = 120 Hz		81		
SVR	Supply voltage rejection	$V_I = 5 \pm 1 V$	f = 1 kHz f = 10 kHz		76 60		dB
eN	Output noise voltage	B = 10 Hz to 100			50		μV
		lo = 100 mA			0.2	0.4	μv
Vd	Dropout voltage	$I_0 = 100 \text{ mA}$ T _J = -40 to 125	°C		0.2	0.5	V
VIL	Control input logic low	T _J = -40 to 125 °C				0.8	V
VIH	Control input logic high	T _J = -40 to 125 °C)	2			V
h	Control input current	$V_{I} = 6 V$ $V_{C} = 6 V$	FC1		10		μA
Co	Output bypass capacitance	$ESR = 0.1 \text{ to } 10 \Omega$ $I_0 = 0 \text{ to } 100 \text{ m/s}$		2	10		μF

DocID2573 Rev 15

Refer to test circuits	$T_1 = 25 ^{\circ}C_1 C_1 =$	-01 IIF Co = 22 I	uF unless otherwise specified.
	13 - 20 0, 0, -	-0.1μ , $00 - 2.2$	an anness ourierwise specifica.

Table 5: LE30C electrical characteristics	
---	--

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		lo = 10 mA V _I = 5 V	2.940	3	3.060	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ V ₁ = 5 V T _J = -25 to 85 °C	2.880		3.120	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150			mA
ΔVo	Line regulation	V _I = 3.7 to 18 V Io = 0.5 mA		3	20	mV
ΔVo	Load regulation	V ₁ = 4 V I ₀ = 0.5 to 100 mA		3	25	mV
		V _I = 4 to 18 V lo = 0 mA ON mode		0.5	1	~ ^
la	Quiescent current	Vi = 4 to 18 V Io = 100 mA		1.5	3	mA
		VI = 6 V OFF mode		50	100	μA
		f = 120 Hz		81		
SVR	Supply voltage rejection	$V_1 = 5 \pm 1 V$ $f = 1 \text{ kHz}$		76		dB
eN	Output noise voltage	f = 10 kHz B = 10 Hz to 100 kHz		60 50		μV
en	Output hoise voitage	lo = 100 mA		0.2	0.4	μv
Vd	Dropout voltage	Io = 100 mA T _J = -40 to 125 °C		0.2	0.4	v
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
Vih	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	$V_{I} = 6 V$ $V_{C} = 6 V$		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω $l_0 = 0$ to 100 mA	2	10		μF

57

DocID2573 Rev 15

7/24

Electrical characteristics

LEXX

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Io = 10 mA VI = 5.3 V	3.234	3.3	3.366	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ V _I = 5.3 V T _J = -25 to 85 °C	3.168		3.432	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150			mA
ΔVo	Line regulation	V _I = 4 to 18 V I _O = 0.5 mA		3	20	mV
ΔVo	Load regulation	V _I = 4.3 V I ₀ = 0.5 to 100 mA		3	25	mV
	Quiescent current	V _I = 4.3 to 18 V Io = 0 mA ON mode		0.5	1	mA
ld		$V_{I} = 4.3 \text{ to } 18 \text{ V}$ $I_{O} = 100 \text{ mA}$		1.5	3	
		VI = 6 V OFF mode		50	100	μA
SVR	Supply voltage rejection			80 75 60		dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		50		μV
		lo = 100 mA		0.2	0.4	
Vd	Dropout voltage	lo = 100 mA T _J = -40 to 125 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	$V_{I} = 6 V$ $V_{C} = 6 V$		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω $I_0 = 0$ to 100 mA	2	10		μF

DocID2573 Rev 15

Defendente de star des				. (I
Refer to test circuits	$, I_{\rm J} = 25 {}^{\circ}{\rm C}, {\rm C}_{\rm L}$	= 0.1 μF, Co =	2.2 µF unless	otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Io = 10 mA VI = 6.5 V	4.41	4.5	4.59	
Vo	Output voltage	Io = 10 mA VI = 6.5 V T _J = -25 to 85 °C	4.32		4.68	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150			mA
ΔVo	Line regulation	Vi = 5.2 to 18 V Io = 0.5 mA		4	30	mV
ΔVo	Load regulation	$V_{I} = 5.5 V$ $I_{O} = 0.5 \text{ to } 100 \text{ mA}$		3	25	mV
	Quiescent current	V _I = 5.5 to 18 V Io = 0 mA ON mode		0.5	1	mA
ld		$V_{I} = 5.5 \text{ to } 18 \text{ V}$ $I_{O} = 100 \text{ mA}$		1.5	3	
		VI = 6 V OFF mode		50	100	μA
SVR	Supply voltage rejection			77 72 60		dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		50		μV
		lo = 100 mA		0.2	0.4	
Vd	Dropout voltage	lo = 100 mA T _J = -40 to 125 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	$V_{I} = 6 V$ $V_{C} = 6 V$		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω $I_0 = 0$ to 100 mA	2	10		μF

57

DoclD2573 Rev 15

9/24

Electrical characteristics

LEXX

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Io = 10 mA VI = 7 V	4.95	5	5.05	
Vo	Output voltage	lo = 10 mA V _I = 7 V T _J = -25 to 85 °C	4.9		5.1	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150	350	425	mA
ΔVo	Line regulation	V ₁ = 5.7 to 18 V Io = 0.5 mA		4	20	mV
ΔVo	Load regulation	$V_1 = 6 V$ $I_0 = 0.5 \text{ to } 100 \text{ mA}$		3	15	mV
		V _I = 6 to 18 V Io = 0 mA ON mode		0.5	1	mA
ld	Quiescent current	$V_{I} = 6 \text{ to } 18 \text{ V}$ $I_{O} = 100 \text{ mA}$		1.5	3	111/-
		VI = 6 V OFF mode		50	100	μA
SVR	Supply voltage rejection	f = 120 Hz $V_1 = 7 \pm 1 V$ f = 10 kHz		76 71 60		dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		50		μV
Vd	Dropout voltage	$I_0 = 100 \text{ mA}$ $I_0 = 100 \text{ mA}$ $T_J = -40 \text{ to } 125 \text{ °C}$		0.2	0.4 0.5	v
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	Vi = 6 V Vc = 6 V		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω lo = 0 to 100 mA	2	10		μF

10/24

DocID2573 Rev 15

Refer to test circuits,	$T_{J} = 25 \ ^{\circ}C, C_{I} =$	$0.1 \ \mu F, C_0 = 2.2 \ \mu$	F unless otherwise specified.
		•··· p , ••• =·= p.	

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Io = 10 mA VI = 7 V	4.9	5	5.1	
Vo	Output voltage	$I_{O} = 10 \text{ mA}$ V _I = 7 V T _J = -25 to 85 °C	4.8		5.2	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150	350	425	mA
ΔVo	Line regulation	Vi = 5.7 to 18 V Io = 0.5 mA		4	30	mV
ΔVo	Load regulation	$V_{I} = 6 V$ $I_{O} = 0.5 \text{ to } 100 \text{ mA}$		3	25	mV
la	Quiescent current	Vi = 6 to 18 V lo = 0 mA ON mode		0.5	1	mA
		$V_{I} = 6 \text{ to } 18 \text{ V}$ $I_{O} = 100 \text{ mA}$		1.5	3	11174
		VI = 6 V OFF mode		50	100	μA
SVR	Supply voltage rejection	$l_0 = 5 \text{ mA}$ $V_1 = 7 \pm 1 \text{ V}$ $f = 120 \text{ Hz}$ $f = 1 \text{ kHz}$ $f = 10 \text{ kHz}$		76 71 60		dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		50		μV
		lo = 100 mA		0.2	0.4	1
V _d Dropout voltage		Io = 100 mA T _J = -40 to 125 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
Vih	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	V _I = 6 V V _C = 6 V		10		μA
Co	Output bypass capacitance	capacitance $ESR = 0.1 \text{ to } 10 \Omega$ $I_0 = 0 \text{ to } 100 \text{ mA}$		10		μF

57

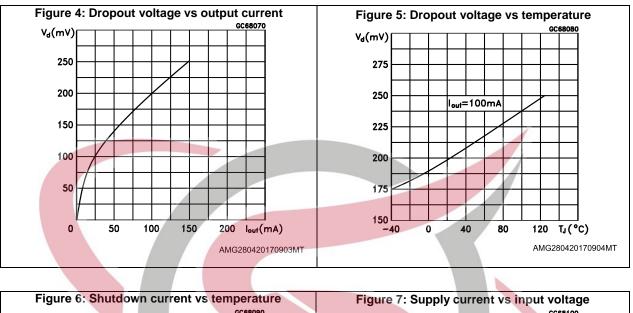
DoclD2573 Rev 15

11/24

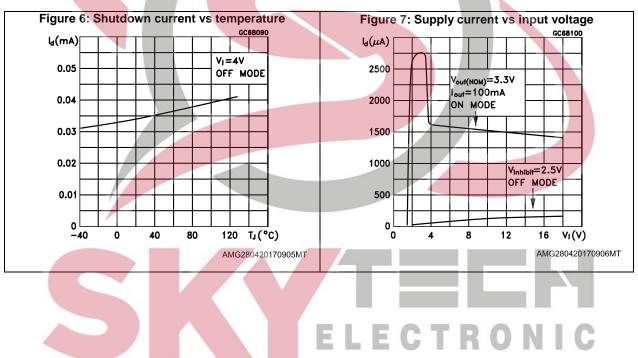
Electrical characteristics

LEXX

Refer to test circuits, $T_J = 25$ °C, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.

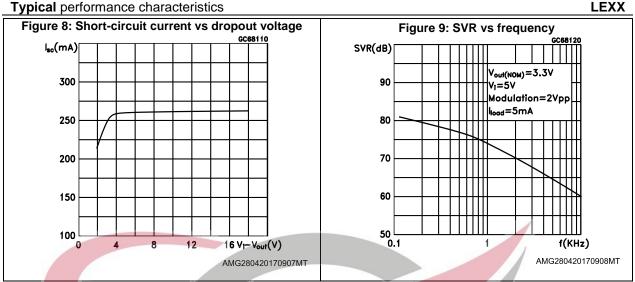

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		$I_0 = 10 \text{ mA}$ V ₁ = 10 V	7.84	8	8.16	
Vo	Output voltage	$I_0 = 10 \text{ mA}$ V _I = 10 V T _J = -25 to 85 °C	7.68		8.32	V
Vı	Operating input voltage	I _O = 100 mA			18	V
lo	Output current limit		150			mA
ΔVo	Line regulation	V ₁ = 8.7 to 18 V Io = 0.5 mA		5	35	m∨
ΔVo	Load regulation	V ₁ = 9 V I ₀ = 0.5 to 100 mA		3	25	m∖
la	Quiescent current	V _I = 9 to 18 V Io = 0 mA ON mode		0.7	1.6	mA
		$V_1 = 9 \text{ to } 18 \text{ V}$ $I_0 = 100 \text{ mA}$		1.7	3.6	
		V _I = 9 V OFF mode		70	140	μA
SVR	Supply voltage rejection	f = 120 Hz f = 120 Hz f = 1 kHz f = 10 kHz		72 66 57		dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		50		µ٧
		lo = 100 mA		0.2	0.4	
Vd	Dropout voltage	lo = 100 mA T _J = -40 to 125 °C			0.5	V
VIL	Control input logic low	T _J = -40 to 125 °C			0.8	V
VIH	Control input logic high	T _J = -40 to 125 °C	2			V
h	Control input current	$V_1 = 9 V$ $V_C = 6 V$		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω 2 10 Io = 0 to 100 mA 2 10				μF

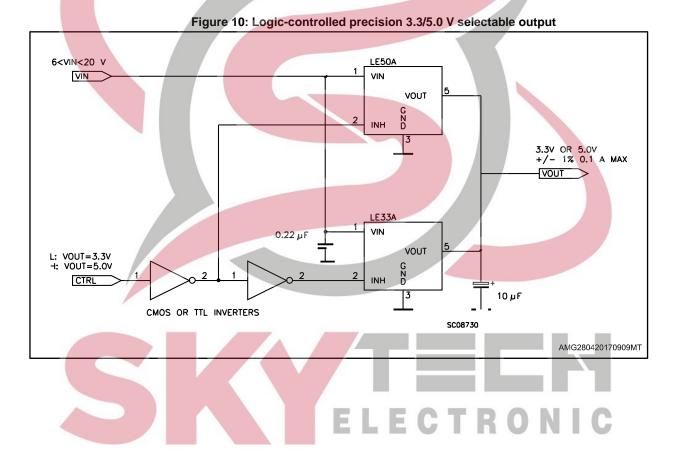
12/24


DocID2573 Rev 15

5 Typical performance characteristics

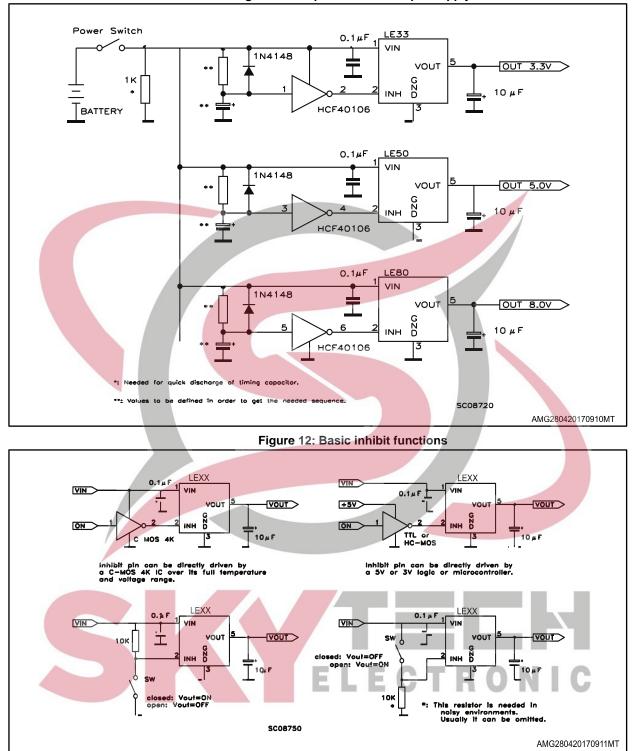
Unless otherwise specified, $V_{O(NOM)} = 3.3$ V.




DocID2573 Rev 15

13/24

LEXX


Typical performance characteristics

57 14/24 DocID2573 Rev 15

Figure 11: Sequential multi-output supply

57

DocID2573 Rev 15

15/24

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 SO-8 package information

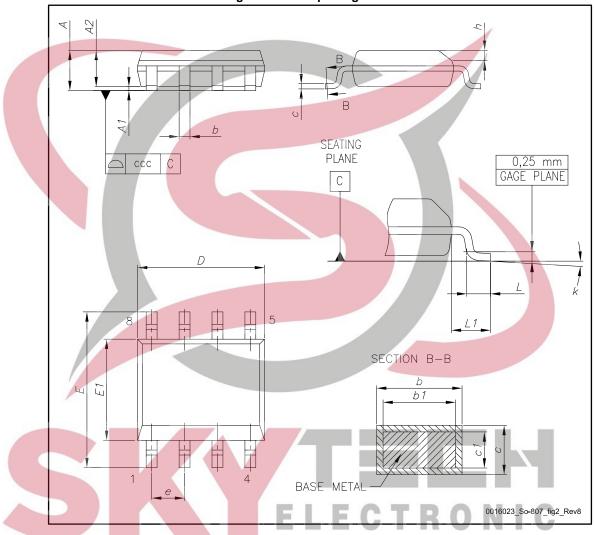
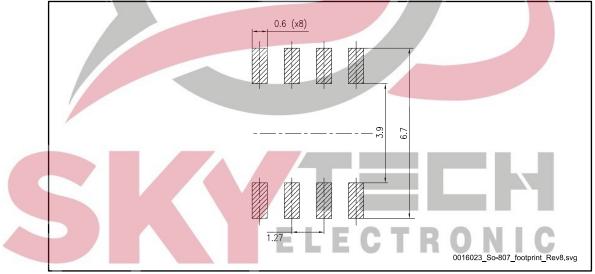


Figure 13: SO-8 package outline

57

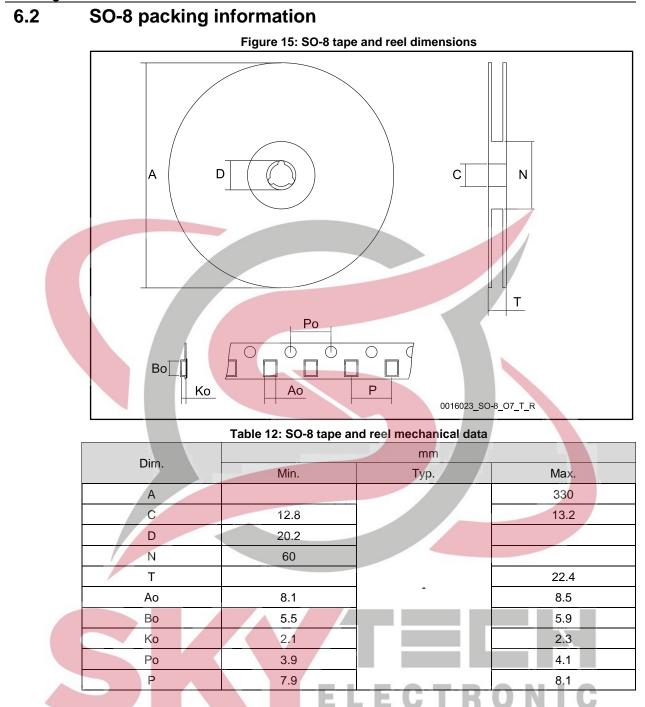
DocID2573 Rev 15


LEXX

Published by WWW.SKYTECH.ir

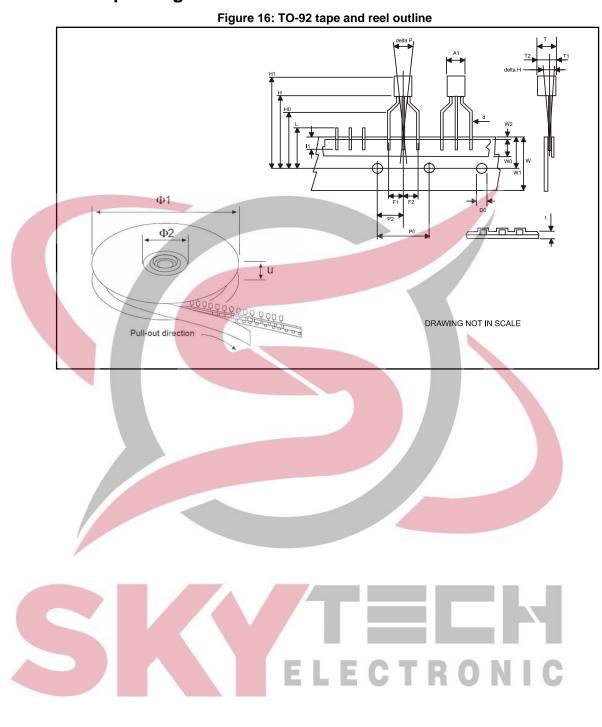
16/24

Table 11: SO-8 mechanical data					
Dim.	mm				
Dim.	Min.	Тур.	Max.		
А			1.75		
A1	0.10		0.25		
A2	1.25				
b	0.31		0.51		
b1	0.28		0.48		
С	0.10		0.25		
c1	0.10		0.23		
D	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е		1.27			
h	0.25		0.50		
L	0.40		1.27		
L1		1.04			
L2		0.25			
k	0°		8°		
ccc			0.10		


Figure 14: SO-8 recommended footprint (dimensions are in mm)

DocID2573 Rev 15

17/24


18/24

DocID2573 Rev 15

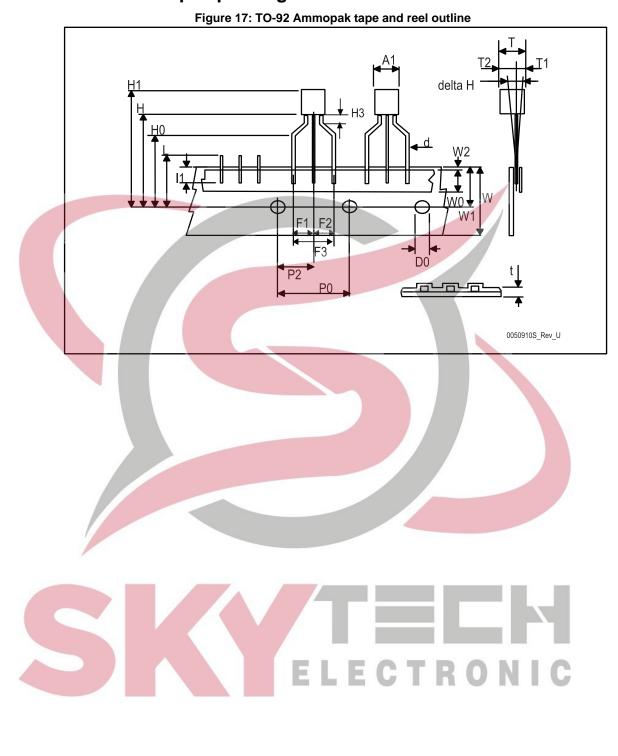
57

TO-92 packing information

DocID2573 Rev 15

19/24

Dim.		mm		
Dim.				
	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
WO	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
H3	0.5	1	2	
НО	15.50	16.00	18.8	
H1		<mark>25</mark> .0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
11	3.00			
delta P	-1.00		1.00	
Ø1	352	355	358	
Ø2	28	30	32	
u	44	47	50	
SKIELECTRONIC				
	T T1 T2 d P0 P2 F1, F2 F3 delta H W W0 W1 W2 H H3 H0 H1 D0 t L 11 delta P Ø1 Ø2	T T T1 T2 d 0.45 P0 12.50 P2 5.65 F1, F2 2.40 F3 4.98 delta H -2.00 W 17.50 W0 5.5 W1 8.50 W2 H H3 0.5 H0 15.50 H1 0.5 H2 3.80 t 11 J00 3.80 t 11 J11 3.00 Ø2 28 U 44	T Image: constraint of the system of the	


20/24

DocID2573 Rev 15

LEXX 6.4

TO-92 Ammopak packing information

DocID2573 Rev 15

21/24

	mm			
Dim.	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
WO	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
H3	0.5	1	2	
НО	15.50	16.00	18.8	
H1		<mark>25</mark> .0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
11	3.00			
delta P	-1.00		1.00	

22/24

DocID2573 Rev 15

57

Revision history 7

Table 15: Document revision history				
Date	Revision	Changes		
09-Jul-2004	6	$I_{\rm O}$ typ. and max. are changed in tab. 24 and 25 - pag. 14.		
16-Mar-2005	7	Add Tape & Reel for TO-92 - Note on Table 3.		
12-Feb-2007	8	Change value ToP on Table 2.		
26-Jul-2007	9	Add Table 1 in cover page.		
29-Nov-2007	10	Modified: Table 25.		
12-Feb-2008	11	Modified: Table 25.		
10-Jul-2008	12	Modified: Table 1 and Table 25.		
22-May-2012	13	Updated: Table 1 on page 1. Changed: TA in TJ test conditions from table 4 to table 10.		
14-Mar-2014	14	Changed the part numbers LExxAB and LExxC to LEXX. Updated the title. Added the ammopack package to the figure in cover page. Updated the Table 1: Device summary. Updated the Description. Updated Figure 3. Changed the title of Figure 6. Updated mechanical data.		
03-May-2017	15	Updated Table 1: "Device summary" and Section 6: "Package information". Minor text changes.		
SKYTECH				

DocID2573 Rev 15

23/24

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

SKYTECH

DocID2573 Rev 15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

LE30CD-TR LE50CD-TR LE50ABD-TR LE50ABZ-AP LE33CZ-TR LE33CZ-AP LE80CD-TR LE45CD-TR LE45CD-TR

